Joint Semantic and Motion Segmentation for Dynamic Scenes using Deep Convolutional Networks

نویسندگان

  • Nazrul Haque
  • N. Dinesh Reddy
  • K. Madhava Krishna
چکیده

Dynamic scene understanding is a challenging problem and motion segmentation plays a crucial role in solving it. Incorporating semantics and motion enhances the overall perception of the dynamic scene. For applications of outdoor robotic navigation, joint learning methods have not been extensively used for extracting spatiotemporal features or adding different priors into the formulation. The task becomes even more challenging without stereo information being incorporated. This paper proposes an approach to fuse semantic features and motion clues using CNNs, to address the problem of monocular semantic motion segmentation. We deduce semantic and motion labels by integrating optical flow as a constraint with semantic features into dilated convolution network. The pipeline consists of three main stages i.e Feature extraction, Feature amplification and Multi Scale Context Aggregation to fuse the semantics and flow features. Our joint formulation shows significant improvements in monocular motion segmentation over the state of the art methods on challenging KITTI tracking dataset.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A multi-scale convolutional neural network for automatic cloud and cloud shadow detection from Gaofen-1 images

The reconstruction of the information contaminated by cloud and cloud shadow is an important step in pre-processing of high-resolution satellite images. The cloud and cloud shadow automatic segmentation could be the first step in the process of reconstructing the information contaminated by cloud and cloud shadow. This stage is a remarkable challenge due to the relatively inefficient performanc...

متن کامل

Tangent Convolutions for Dense Prediction in 3D

We present an approach to semantic scene analysis using deep convolutional networks. Our approach is based on tangent convolutions – a new construction for convolutional networks on 3D data. In contrast to volumetric approaches, our method operates directly on surface geometry. Crucially, the construction is applicable to unstructured point clouds and other noisy real-world data. We show that t...

متن کامل

Multi-Scale Convolutional Architecture for Semantic Segmentation

Advances in 3D sensing technologies have made the availability of RGB and Depth information easier than earlier which can greatly assist in the semantic segmentation of 2D scenes. There are many works in literature that perform semantic segmentation in such scenes, but few relates to the environment that possesses a high degree of clutter in general e.g. indoor scenes. In this paper, we explore...

متن کامل

A Hybrid Algorithm based on Deep Learning and Restricted Boltzmann Machine for Car Semantic Segmentation from Unmanned Aerial Vehicles (UAVs)-based Thermal Infrared Images

Nowadays, ground vehicle monitoring (GVM) is one of the areas of application in the intelligent traffic control system using image processing methods. In this context, the use of unmanned aerial vehicles based on thermal infrared (UAV-TIR) images is one of the optimal options for GVM due to the suitable spatial resolution, cost-effective and low volume of images. The methods that have been prop...

متن کامل

Integration of Deep Learning Algorithms and Bilateral Filters with the Purpose of Building Extraction from Mono Optical Aerial Imagery

The problem of extracting the building from mono optical aerial imagery with high spatial resolution is always considered as an important challenge to prepare the maps. The goal of the current research is to take advantage of the semantic segmentation of mono optical aerial imagery to extract the building which is realized based on the combination of deep convolutional neural networks (DCNN) an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017